Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ophthalmic Physiol Opt ; 44(2): 311-320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084770

ABSTRACT

INTRODUCTION: Despite the well-known reproducibility issues of subjective refraction, most studies evaluating autorefractors compared differences between the device and subjective refraction. This work evaluated the performance of a novel handheld Hartmann-Shack-based autorefractor using an alternative protocol, which considered the inherent variability of subjective refraction. METHODS: Participants underwent an initial measurement with a desktop autorefractor, two subjective refractions (SR1 and SR2) and a final measurement with the QuickSee Free (QSFree) portable autorefractor. Autorefractor performance was evaluated by comparing the differences between the QSFree and each of the subjective refractions with the difference between the subjective refractions (SR1 vs. SR2) using Bland-Altman analysis and percentage of agreement. RESULTS: A total of 75 subjects (53 ± 14 years) were enrolled in the study. The average difference in the absolute spherical equivalent (M) between the QSFree and the SR1 and SR2 was ±0.24 and ±0.02 D, respectively, that is, very similar or smaller than the SR1 versus SR2 difference (±0.26 D). Average differences in astigmatic components were found to be negligible. The results demonstrate that differences between QSFree and both subjective refractions in J0 and J45 were within ±0.50 D for at least 96% of the measurements. The limits of agreement (LOAs) of the differences between QSFree and SR1, as well as QSFree and SR2, were higher than those observed between SR1 and SR2 for M, J0 and J45 . CONCLUSIONS: A protocol was designed and validated for the evaluation of a refractive device to account for the variability of subjective refraction. This protocol was used to evaluate a novel portable autorefractor and observed a smaller difference between the device and subjective refractions than the difference between the two subjective refraction measurements in terms of mean bias error, although the standard deviation was higher.


Subject(s)
Optometry , Refractive Errors , Humans , Reproducibility of Results , Refractive Errors/diagnosis , Refraction, Ocular , Vision Tests/methods
3.
J Optom ; 15 Suppl 1: S22-S31, 2022.
Article in English | MEDLINE | ID: mdl-35431181

ABSTRACT

PURPOSE: To assess the performance of machine learning (ML) ensemble models for predicting patient subjective refraction (SR) using demographic factors, wavefront aberrometry data, and measurement quality related metrics taken with a low-cost portable autorefractor. METHODS: Four ensemble models were evaluated for predicting individual power vectors (M, J0, and J45) corresponding to the eyeglass prescription of each patient. Those models were random forest regressor (RF), gradient boosting regressor (GB), extreme gradient boosting regressor (XGB), and a custom assembly model (ASB) that averages the first three models. Algorithms were trained on a dataset of 1244 samples and the predictive power was evaluated with 518 unseen samples. Variables used for the prediction were age, gender, Zernike coefficients up to 5th order, and pupil related metrics provided by the autorefractor. Agreement with SR was measured using Bland-Altman analysis, overall prediction error, and percentage of agreement between the ML predictions and subjective refractions for different thresholds (0.25 D, 0.5 D). RESULTS: All models considerably outperformed the predictions from the autorefractor, while ASB obtained the best results. The accuracy of the predictions for each individual power vector component was substantially improved resulting in a ± 0.63 D, ±0.14D, and ±0.08 D reduction in the 95% limits of agreement of the error distribution for M, J0, and J45, respectively. The wavefront-aberrometry related variables had the biggest impact on the prediction, while demographic and measurement quality-related features showed a heterogeneous but consistent predictive value. CONCLUSIONS: These results suggest that ML is effective for improving precision in predicting patient's SR from objective measurements taken with a low-cost portable device.


Subject(s)
Refractive Errors , Humans , Aberrometry/methods , Refractive Errors/diagnosis , Refraction, Ocular , Vision Tests , Machine Learning , Reproducibility of Results
4.
PLoS One ; 15(10): e0240933, 2020.
Article in English | MEDLINE | ID: mdl-33112912

ABSTRACT

PURPOSE: To assess the performance of an open-view binocular handheld aberrometer (QuickSee) for diagnosing refractive errors in children. METHODS: 123 school-age children (9.9 ± 3.3 years) with moderate refractive error underwent autorefraction (AR) with a standard desktop device and subjective refraction (SR), with or without cycloplegia to determine their eyeglass prescription. Measurements with QuickSee (QS) were taken in 62 of these patients without cycloplegia (NC), and in 61 under cycloplegia (C). Differences in refraction values (AR vs SR vs QS) as well as the visual acuity (VA) achieved by the patients with each method (QS vs SR) were used to evaluate the performance of the device in measuring refractive error. RESULTS: The spherical equivalent refraction obtained by QS agreed within 0.5 D of the SR in 71% (NC) and 70% (C) of the cases. Agreement between the desktop autorefractor and SR for the same threshold was of 61% (NC) and 77% (C). VA resulting from QS refractions was equal to or better than that achieved by SR procedure in 77% (NC) and 74% (C) of the patients. Average improvement in VA with the QS refractions was of 8.6 and 13.4 optotypes for the NC and C groups respectively, while the SR procedure provided average improvements of 8.9 (NC) and 14.8 (C) optotypes. CONCLUSIONS: The high level of agreement between QuickSee and subjective refraction together with the VA improvement achieved in both study groups using QuickSee refractions suggest that the device is a useful autorefraction tool for school-age children.


Subject(s)
Refractive Errors/diagnosis , Vision Tests/instrumentation , Adolescent , Child , Child, Preschool , Eyeglasses , Female , Humans , Male , Optometry/instrumentation , Optometry/methods , Prescriptions , Refraction, Ocular/physiology , Schools , Vision Tests/methods , Visual Acuity/physiology
5.
Optom Vis Sci ; 96(10): 726-732, 2019 10.
Article in English | MEDLINE | ID: mdl-31592955

ABSTRACT

SIGNIFICANCE: There is a critical need for tools that increase the accessibility of eye care to address the most common cause of vision impairment: uncorrected refractive errors. This work assesses the performance of an affordable autorefractor, which could help reduce the burden of this health care problem in low-resource communities. PURPOSE: The purpose of this study was to validate the commercial version of a portable wavefront autorefractor for measuring refractive errors. METHODS: Refraction was performed without cycloplegia using (1) a standard clinical procedure consisting of an objective measurement with a desktop autorefractor followed by subjective refraction (SR) and (2) with the handheld autorefractor. Agreement between both methods was evaluated using Bland-Altman analysis and by comparing the visual acuity (VA) with trial frames set to the resulting measurements. RESULTS: The study was conducted on 54 patients (33.9 ± 14.1 years of age) with a spherical equivalent (M) refraction determined by SR ranging from -7.25 to 4.25 D (mean ± SD, -0.93 ± 1.95 D). Mean differences between the portable autorefractor and SR were 0.09 ± 0.39, -0.06 ± 0.13, and 0.02 ± 0.12 D for M, J0, and J45, respectively. The device agreed within 0.5 D of SR in 87% of the eyes for spherical equivalent power. The average VAs achieved from trial lenses set to the wavefront autorefractor and SR results were 0.02 ± 0.015 and 0.015 ± 0.042 logMAR units, respectively. Visual acuity resulting from correction based on the device was the same as or better than that achieved by SR in 87% of the eyes. CONCLUSIONS: This study found excellent agreement between the measurements obtained with the portable autorefractor and the prescriptions based on SR and only small differences between the VA achieved by either method.


Subject(s)
Aberrometry/instrumentation , Refractive Errors/diagnosis , Aberrometry/economics , Adult , Aged , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Presbyopia/physiopathology , Refraction, Ocular/physiology , Refractive Errors/physiopathology , Reproducibility of Results , Visual Acuity/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...